コンテンツへスキップ

ボディ - 更新

PUTによる更新の置換

アイテムを更新するには、HTTP PUTオペレーションを使用できます。

jsonable_encoderを使用すると、入力データをJSONとして保存できるデータ(例:NoSQLデータベース)に変換できます。例えば、datetimestrに変換する、などです。

from fastapi import FastAPI
from fastapi.encoders import jsonable_encoder
from pydantic import BaseModel

app = FastAPI()


class Item(BaseModel):
    name: str | None = None
    description: str | None = None
    price: float | None = None
    tax: float = 10.5
    tags: list[str] = []


items = {
    "foo": {"name": "Foo", "price": 50.2},
    "bar": {"name": "Bar", "description": "The bartenders", "price": 62, "tax": 20.2},
    "baz": {"name": "Baz", "description": None, "price": 50.2, "tax": 10.5, "tags": []},
}


@app.get("/items/{item_id}", response_model=Item)
async def read_item(item_id: str):
    return items[item_id]


@app.put("/items/{item_id}", response_model=Item)
async def update_item(item_id: str, item: Item):
    update_item_encoded = jsonable_encoder(item)
    items[item_id] = update_item_encoded
    return update_item_encoded
🤓 その他のバージョンとバリアント
from typing import Union

from fastapi import FastAPI
from fastapi.encoders import jsonable_encoder
from pydantic import BaseModel

app = FastAPI()


class Item(BaseModel):
    name: Union[str, None] = None
    description: Union[str, None] = None
    price: Union[float, None] = None
    tax: float = 10.5
    tags: list[str] = []


items = {
    "foo": {"name": "Foo", "price": 50.2},
    "bar": {"name": "Bar", "description": "The bartenders", "price": 62, "tax": 20.2},
    "baz": {"name": "Baz", "description": None, "price": 50.2, "tax": 10.5, "tags": []},
}


@app.get("/items/{item_id}", response_model=Item)
async def read_item(item_id: str):
    return items[item_id]


@app.put("/items/{item_id}", response_model=Item)
async def update_item(item_id: str, item: Item):
    update_item_encoded = jsonable_encoder(item)
    items[item_id] = update_item_encoded
    return update_item_encoded
from typing import List, Union

from fastapi import FastAPI
from fastapi.encoders import jsonable_encoder
from pydantic import BaseModel

app = FastAPI()


class Item(BaseModel):
    name: Union[str, None] = None
    description: Union[str, None] = None
    price: Union[float, None] = None
    tax: float = 10.5
    tags: List[str] = []


items = {
    "foo": {"name": "Foo", "price": 50.2},
    "bar": {"name": "Bar", "description": "The bartenders", "price": 62, "tax": 20.2},
    "baz": {"name": "Baz", "description": None, "price": 50.2, "tax": 10.5, "tags": []},
}


@app.get("/items/{item_id}", response_model=Item)
async def read_item(item_id: str):
    return items[item_id]


@app.put("/items/{item_id}", response_model=Item)
async def update_item(item_id: str, item: Item):
    update_item_encoded = jsonable_encoder(item)
    items[item_id] = update_item_encoded
    return update_item_encoded

PUTは既存のデータを置き換えるデータを`受信するために使用されます。

置換に関する警告

これは、PUTを使用してアイテムbarを更新しようとする際に、ボディに

{
    "name": "Barz",
    "price": 3,
    "description": None,
}

と入力すると、すでに保存されている属性"tax": 20.2が含まれていないため、入力モデルはデフォルト値の"tax": 10.5を受け取ります。

そして、データはこの「新しい」taxである10.5で保存されます。

PATCHによる部分的な更新

また、HTTP PATCHオペレーションを使用して、データを部分的に更新することもできます。

これは、更新したいデータのみを送信し、残りはそのままにしておくことができることを意味します。

注意

PATCHPUTに比べてあまり一般的ではなく、知られていません。

そして、多くのチームは部分的な更新であってもPUTのみを使用します。

FastAPIは何も制限を課さないため、どのように使用するかは自由です。

しかし、このガイドでは、それらがどのように使用されることを意図しているかをおおよそ示しています。

Pydanticのexclude_unsetパラメータの使用

部分的な更新を受け取りたい場合は、Pydanticモデルの.model_dump()でパラメータexclude_unsetを使用すると非常に便利です。

item.model_dump(exclude_unset=True)のように。

情報

Pydantic v1 ではメソッドは .dict() と呼ばれていましたが、Pydantic v2 では非推奨 (ただし引き続きサポートされています) となり、.model_dump() に改名されました。

ここでの例は Pydantic v1 との互換性のために .dict() を使用していますが、Pydantic v2 を使用できる場合は代わりに .model_dump() を使用してください。

これにより、itemモデルの作成時に設定されたデータのみを含むdictが生成され、デフォルト値は除外されます。

その後、これを使用して、設定されたデータ(リクエストで送信されたデータ)のみを含むdictを生成し、デフォルト値を省略できます。

from fastapi import FastAPI
from fastapi.encoders import jsonable_encoder
from pydantic import BaseModel

app = FastAPI()


class Item(BaseModel):
    name: str | None = None
    description: str | None = None
    price: float | None = None
    tax: float = 10.5
    tags: list[str] = []


items = {
    "foo": {"name": "Foo", "price": 50.2},
    "bar": {"name": "Bar", "description": "The bartenders", "price": 62, "tax": 20.2},
    "baz": {"name": "Baz", "description": None, "price": 50.2, "tax": 10.5, "tags": []},
}


@app.get("/items/{item_id}", response_model=Item)
async def read_item(item_id: str):
    return items[item_id]


@app.patch("/items/{item_id}", response_model=Item)
async def update_item(item_id: str, item: Item):
    stored_item_data = items[item_id]
    stored_item_model = Item(**stored_item_data)
    update_data = item.dict(exclude_unset=True)
    updated_item = stored_item_model.copy(update=update_data)
    items[item_id] = jsonable_encoder(updated_item)
    return updated_item
🤓 その他のバージョンとバリアント
from typing import Union

from fastapi import FastAPI
from fastapi.encoders import jsonable_encoder
from pydantic import BaseModel

app = FastAPI()


class Item(BaseModel):
    name: Union[str, None] = None
    description: Union[str, None] = None
    price: Union[float, None] = None
    tax: float = 10.5
    tags: list[str] = []


items = {
    "foo": {"name": "Foo", "price": 50.2},
    "bar": {"name": "Bar", "description": "The bartenders", "price": 62, "tax": 20.2},
    "baz": {"name": "Baz", "description": None, "price": 50.2, "tax": 10.5, "tags": []},
}


@app.get("/items/{item_id}", response_model=Item)
async def read_item(item_id: str):
    return items[item_id]


@app.patch("/items/{item_id}", response_model=Item)
async def update_item(item_id: str, item: Item):
    stored_item_data = items[item_id]
    stored_item_model = Item(**stored_item_data)
    update_data = item.dict(exclude_unset=True)
    updated_item = stored_item_model.copy(update=update_data)
    items[item_id] = jsonable_encoder(updated_item)
    return updated_item
from typing import List, Union

from fastapi import FastAPI
from fastapi.encoders import jsonable_encoder
from pydantic import BaseModel

app = FastAPI()


class Item(BaseModel):
    name: Union[str, None] = None
    description: Union[str, None] = None
    price: Union[float, None] = None
    tax: float = 10.5
    tags: List[str] = []


items = {
    "foo": {"name": "Foo", "price": 50.2},
    "bar": {"name": "Bar", "description": "The bartenders", "price": 62, "tax": 20.2},
    "baz": {"name": "Baz", "description": None, "price": 50.2, "tax": 10.5, "tags": []},
}


@app.get("/items/{item_id}", response_model=Item)
async def read_item(item_id: str):
    return items[item_id]


@app.patch("/items/{item_id}", response_model=Item)
async def update_item(item_id: str, item: Item):
    stored_item_data = items[item_id]
    stored_item_model = Item(**stored_item_data)
    update_data = item.dict(exclude_unset=True)
    updated_item = stored_item_model.copy(update=update_data)
    items[item_id] = jsonable_encoder(updated_item)
    return updated_item

Pydanticのupdateパラメータの使用

既存のモデルのコピーを.model_copy()を使用して作成し、更新するデータを含むdictupdateパラメータとして渡すことができます。

情報

Pydantic v1では、このメソッドは.copy()と呼ばれていました。Pydantic v2では非推奨(ただし引き続きサポート)となり、.model_copy()に改名されました。

ここでの例はPydantic v1との互換性のために.copy()を使用していますが、Pydantic v2を使用できる場合は.model_copy()を使用すべきです。

stored_item_model.model_copy(update=update_data)のように

from fastapi import FastAPI
from fastapi.encoders import jsonable_encoder
from pydantic import BaseModel

app = FastAPI()


class Item(BaseModel):
    name: str | None = None
    description: str | None = None
    price: float | None = None
    tax: float = 10.5
    tags: list[str] = []


items = {
    "foo": {"name": "Foo", "price": 50.2},
    "bar": {"name": "Bar", "description": "The bartenders", "price": 62, "tax": 20.2},
    "baz": {"name": "Baz", "description": None, "price": 50.2, "tax": 10.5, "tags": []},
}


@app.get("/items/{item_id}", response_model=Item)
async def read_item(item_id: str):
    return items[item_id]


@app.patch("/items/{item_id}", response_model=Item)
async def update_item(item_id: str, item: Item):
    stored_item_data = items[item_id]
    stored_item_model = Item(**stored_item_data)
    update_data = item.dict(exclude_unset=True)
    updated_item = stored_item_model.copy(update=update_data)
    items[item_id] = jsonable_encoder(updated_item)
    return updated_item
🤓 その他のバージョンとバリアント
from typing import Union

from fastapi import FastAPI
from fastapi.encoders import jsonable_encoder
from pydantic import BaseModel

app = FastAPI()


class Item(BaseModel):
    name: Union[str, None] = None
    description: Union[str, None] = None
    price: Union[float, None] = None
    tax: float = 10.5
    tags: list[str] = []


items = {
    "foo": {"name": "Foo", "price": 50.2},
    "bar": {"name": "Bar", "description": "The bartenders", "price": 62, "tax": 20.2},
    "baz": {"name": "Baz", "description": None, "price": 50.2, "tax": 10.5, "tags": []},
}


@app.get("/items/{item_id}", response_model=Item)
async def read_item(item_id: str):
    return items[item_id]


@app.patch("/items/{item_id}", response_model=Item)
async def update_item(item_id: str, item: Item):
    stored_item_data = items[item_id]
    stored_item_model = Item(**stored_item_data)
    update_data = item.dict(exclude_unset=True)
    updated_item = stored_item_model.copy(update=update_data)
    items[item_id] = jsonable_encoder(updated_item)
    return updated_item
from typing import List, Union

from fastapi import FastAPI
from fastapi.encoders import jsonable_encoder
from pydantic import BaseModel

app = FastAPI()


class Item(BaseModel):
    name: Union[str, None] = None
    description: Union[str, None] = None
    price: Union[float, None] = None
    tax: float = 10.5
    tags: List[str] = []


items = {
    "foo": {"name": "Foo", "price": 50.2},
    "bar": {"name": "Bar", "description": "The bartenders", "price": 62, "tax": 20.2},
    "baz": {"name": "Baz", "description": None, "price": 50.2, "tax": 10.5, "tags": []},
}


@app.get("/items/{item_id}", response_model=Item)
async def read_item(item_id: str):
    return items[item_id]


@app.patch("/items/{item_id}", response_model=Item)
async def update_item(item_id: str, item: Item):
    stored_item_data = items[item_id]
    stored_item_model = Item(**stored_item_data)
    update_data = item.dict(exclude_unset=True)
    updated_item = stored_item_model.copy(update=update_data)
    items[item_id] = jsonable_encoder(updated_item)
    return updated_item

部分的な更新のまとめ

要約すると、部分的な更新を適用するには、次の手順を実行します。

  • (オプション) PUTの代わりにPATCHを使用します。
  • 保存されたデータを取得します。
  • そのデータをPydanticモデルに入れます。
  • 入力モデルからデフォルト値を含まないdictを生成します (exclude_unsetを使用)。
    • これにより、モデルのデフォルト値で既存の値を上書きするのではなく、ユーザーが実際に設定した値のみを更新できます。
  • 保存されたモデルのコピーを作成し、受信した部分的な更新(updateパラメータを使用)で属性を更新します。
  • コピーされたモデルをDBに保存できるものに変換します(たとえば、jsonable_encoderを使用)。
    • これは、モデルの.model_dump()メソッドを再度使用することに似ていますが、値をJSONに変換できるデータ型(たとえば、datetimeからstr)に変換することを保証します。
  • データをDBに保存します。
  • 更新されたモデルを返します。
from fastapi import FastAPI
from fastapi.encoders import jsonable_encoder
from pydantic import BaseModel

app = FastAPI()


class Item(BaseModel):
    name: str | None = None
    description: str | None = None
    price: float | None = None
    tax: float = 10.5
    tags: list[str] = []


items = {
    "foo": {"name": "Foo", "price": 50.2},
    "bar": {"name": "Bar", "description": "The bartenders", "price": 62, "tax": 20.2},
    "baz": {"name": "Baz", "description": None, "price": 50.2, "tax": 10.5, "tags": []},
}


@app.get("/items/{item_id}", response_model=Item)
async def read_item(item_id: str):
    return items[item_id]


@app.patch("/items/{item_id}", response_model=Item)
async def update_item(item_id: str, item: Item):
    stored_item_data = items[item_id]
    stored_item_model = Item(**stored_item_data)
    update_data = item.dict(exclude_unset=True)
    updated_item = stored_item_model.copy(update=update_data)
    items[item_id] = jsonable_encoder(updated_item)
    return updated_item
🤓 その他のバージョンとバリアント
from typing import Union

from fastapi import FastAPI
from fastapi.encoders import jsonable_encoder
from pydantic import BaseModel

app = FastAPI()


class Item(BaseModel):
    name: Union[str, None] = None
    description: Union[str, None] = None
    price: Union[float, None] = None
    tax: float = 10.5
    tags: list[str] = []


items = {
    "foo": {"name": "Foo", "price": 50.2},
    "bar": {"name": "Bar", "description": "The bartenders", "price": 62, "tax": 20.2},
    "baz": {"name": "Baz", "description": None, "price": 50.2, "tax": 10.5, "tags": []},
}


@app.get("/items/{item_id}", response_model=Item)
async def read_item(item_id: str):
    return items[item_id]


@app.patch("/items/{item_id}", response_model=Item)
async def update_item(item_id: str, item: Item):
    stored_item_data = items[item_id]
    stored_item_model = Item(**stored_item_data)
    update_data = item.dict(exclude_unset=True)
    updated_item = stored_item_model.copy(update=update_data)
    items[item_id] = jsonable_encoder(updated_item)
    return updated_item
from typing import List, Union

from fastapi import FastAPI
from fastapi.encoders import jsonable_encoder
from pydantic import BaseModel

app = FastAPI()


class Item(BaseModel):
    name: Union[str, None] = None
    description: Union[str, None] = None
    price: Union[float, None] = None
    tax: float = 10.5
    tags: List[str] = []


items = {
    "foo": {"name": "Foo", "price": 50.2},
    "bar": {"name": "Bar", "description": "The bartenders", "price": 62, "tax": 20.2},
    "baz": {"name": "Baz", "description": None, "price": 50.2, "tax": 10.5, "tags": []},
}


@app.get("/items/{item_id}", response_model=Item)
async def read_item(item_id: str):
    return items[item_id]


@app.patch("/items/{item_id}", response_model=Item)
async def update_item(item_id: str, item: Item):
    stored_item_data = items[item_id]
    stored_item_model = Item(**stored_item_data)
    update_data = item.dict(exclude_unset=True)
    updated_item = stored_item_model.copy(update=update_data)
    items[item_id] = jsonable_encoder(updated_item)
    return updated_item

ヒント

この同じテクニックをHTTP PUT操作でも使用できます。

しかし、ここでの例は、これらのユースケースのために作成されたため、PATCHを使用しています。

注意

入力モデルは引き続き検証されることに注意してください。

したがって、すべての属性を省略できる部分的な更新を受け取りたい場合は、すべての属性がオプション(デフォルト値またはNoneを持つ)としてマークされたモデルが必要です。

更新用のすべてのオプション値を持つモデルと、作成用の必須値を持つモデルを区別するには、追加モデルで説明されているアイデアを使用できます。